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Citus Documentation

Welcome to the documentation for Citus 7.0! Citus horizontally scales PostgreSQL across commodity servers using sharding and replication. Its query engine parallelizes incoming SQL queries across these servers to enable real-time responses on large datasets.


  
    
      Getting Started

      
      Learn the Citus architecture, install locally,
      and follow some ten-minute tutorials.
    
  

  
    
      Use Cases

      
      See how Citus allows multi-tenant applications
      to scale with minimal database changes.
    
  

  
    
      Migrating to Citus

      
      Move from plain PostgreSQL to Citus, and discover
      data modeling techniques for distributed systems.
    
  




  
    
      Citus Cloud

      
      Explore our secure, scalable, highly available
      database-as-a-service.
    
  

  
    
      API / Reference

      
      Get the most out of Citus by learning its
      functions and configuration.
    
  

  
    
      Help and Support

      
      See the frequently asked questions, and
      contact us. This is the page to get unstuck.
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Creating and Modifying Distributed Tables (DDL)


Creating And Distributing Tables

To create a distributed table, you need to first define the table schema. To do so, you can define a table using the CREATE TABLE [http://www.postgresql.org/docs/current/static/sql-createtable.html] statement in the same way as you would do with a regular PostgreSQL table.

CREATE TABLE github_events
(
    event_id bigint,
    event_type text,
    event_public boolean,
    repo_id bigint,
    payload jsonb,
    repo jsonb,
    actor jsonb,
    org jsonb,
    created_at timestamp
);





Next, you can use the create_distributed_table() function to specify the table
distribution column and create the worker shards.

SELECT create_distributed_table('github_events', 'repo_id');





This function informs Citus that the github_events table should be distributed
on the repo_id column (by hashing the column value). The function also creates
shards on the worker nodes using the citus.shard_count and
citus.shard_replication_factor configuration values.

This example would create a total of citus.shard_count number of shards where each
shard owns a portion of a hash token space and gets replicated based on the
default citus.shard_replication_factor configuration value. The shard replicas
created on the worker have the same table schema, index, and constraint
definitions as the table on the coordinator. Once the replicas are created, this
function saves all distributed metadata on the coordinator.

Each created shard is assigned a unique shard id and all its replicas have the same shard id. Each shard is represented on the worker node as a regular PostgreSQL table with name ‘tablename_shardid’ where tablename is the name of the distributed table and shardid is the unique id assigned to that shard. You can connect to the worker postgres instances to view or run commands on individual shards.

You are now ready to insert data into the distributed table and run queries on it. You can also learn more about the UDF used in this section in the Citus Utility Function Reference of our documentation.


Reference Tables

The above method distributes tables into multiple horizontal shards, but it’s also possible to distribute tables into a single shard and replicate it to every worker node. Tables distributed this way are called reference tables.  They are typically small non-partitioned tables which we want to locally join with other tables on any worker. One US-centric example is information about states.

-- a reference table

CREATE TABLE states (
  code char(2) PRIMARY KEY,
  full_name text NOT NULL,
  general_sales_tax numeric(4,3)
);

-- distribute it to all workers

SELECT create_reference_table('states');





Other queries, such as one calculating tax for a shopping cart, can join on the states table with no network overhead.

In addition to distributing a table as a single replicated shard, the create_reference_table UDF marks it as a reference table in the Citus metadata tables. Citus automatically performs two-phase commits (2PC [https://en.wikipedia.org/wiki/Two-phase_commit_protocol]) for modifications to tables marked this way, which provides strong consistency guarantees.

If you have an existing distributed table which has a shard count of one, you can upgrade it to be a recognized reference table by running

SELECT upgrade_to_reference_table('table_name');








Distributing Coordinator Data

If an existing PostgreSQL database is converted into the coordinator node for a Citus cluster, the data in its tables can be distributed efficiently and with minimal interruption to an application.

The create_distributed_table function described earlier works on both empty and non-empty tables, and for the latter automatically distributes table rows throughout the cluster. You will know if it does this by the presence of the message, “NOTICE:  Copying data from local table...” For example:

CREATE TABLE series AS SELECT i FROM generate_series(1,1000000) i;
SELECT create_distributed_table('series', 'i');
NOTICE:  Copying data from local table...
 create_distributed_table
 --------------------------

 (1 row)





Writes on the table are blocked while the data is migrated, and pending writes are handled as distributed queries once the function commits. (If the function fails then the queries become local again.) Reads can continue as normal and will become distributed queries once the function commits.


Note

When distributing a number of tables with foreign keys between them, it’s best to drop the foreign keys before running create_distributed_table and recreating them after distributing the tables. Foreign keys cannot always be enforced when one table is distributed and the other is not.



When migrating data from an external database, such as from Amazon RDS to Citus Cloud, first create the Citus distributed tables via create_distributed_table, then copy the data into the table.






Co-Locating Tables

Co-location is the practice of dividing data tactically, keeping related information on the same machines to enable efficient relational operations, while taking advantage of the horizontal scalability for the whole dataset. For more information and examples see Table Co-Location.

Tables are co-located in groups. To manually control a table’s co-location group assignment use the optional colocate_with parameter of create_distributed_table. If you don’t care about a table’s co-location then omit this parameter. It defaults to the value 'default', which groups the table with any other default co-location table having the same distribution column type, shard count, and replication factor.

-- these tables are implicitly co-located by using the same
-- distribution column type and shard count with the default
-- co-location group

SELECT create_distributed_table('A', 'some_int_col');
SELECT create_distributed_table('B', 'other_int_col');





If you would prefer a table to be in its own co-location group, specify 'none'.

-- not co-located with other tables

SELECT create_distributed_table('A', 'foo', colocate_with => 'none');





To co-locate a number of tables, distribute one and then put the others into its co-location group. For example:

-- distribute stores
SELECT create_distributed_table('stores', 'store_id');

-- add to the same group as stores
SELECT create_distributed_table('orders', 'store_id', colocate_with => 'stores');
SELECT create_distributed_table('products', 'store_id', colocate_with => 'stores');





Information about co-location groups is stored in the pg_dist_colocation table, while pg_dist_partition reveals which tables are assigned to which groups.


Upgrading from Citus 5.x

Starting with Citus 6.0, we made co-location a first-class concept, and started tracking tables’ assignment to co-location groups in pg_dist_colocation. Since Citus 5.x didn’t have this concept, tables created with Citus 5 were not explicitly marked as co-located in metadata, even when the tables were physically co-located.

Since Citus uses co-location metadata information for query optimization and pushdown, it becomes critical to inform Citus of this co-location for previously created tables. To fix the metadata, simply mark the tables as co-located:

-- Assume that stores, products and line_items were created in a Citus 5.x database.

-- Put products and line_items into store's co-location group
SELECT mark_tables_colocated('stores', ARRAY['products', 'line_items']);





This function requires the tables to be distributed with the same method, column type, number of shards, and replication method. It doesn’t re-shard or physically move data, it merely updates Citus metadata.






Dropping Tables

You can use the standard PostgreSQL DROP TABLE command to remove your distributed tables. As with regular tables, DROP TABLE removes any indexes, rules, triggers, and constraints that exist for the target table. In addition, it also drops the shards on the worker nodes and cleans up their metadata.

DROP TABLE github_events;








Modifying Tables

Citus automatically propagates many kinds of DDL statements, which means that modifying a distributed table on the coordinator node will update shards on the workers too. Other DDL statements require manual propagation, and certain others are prohibited such as those which would modify a distribution column. Attempting to run DDL that is ineligible for automatic propagation will raise an error and leave tables on the coordinator node unchanged. Additionally, some constraints like primary keys and uniqueness can only be applied prior to distributing a table.

By default Citus performs DDL with a one-phase commit protocol. For greater safety you can enable two-phase commits by setting

SET citus.multi_shard_commit_protocol = '2pc';





Here is a reference of the categories of DDL statements which propagate. Note that automatic propagation can be enabled or disabled with a configuration parameter.


Adding/Modifying Columns

Citus propagates most ALTER TABLE [https://www.postgresql.org/docs/current/static/ddl-alter.html] commands automatically. Adding columns or changing their default values work as they would in a single-machine PostgreSQL database:

-- Adding a column

ALTER TABLE products ADD COLUMN description text;

-- Changing default value

ALTER TABLE products ALTER COLUMN price SET DEFAULT 7.77;





Significant changes to an existing column are fine too, except for those applying to the distribution column. This column determines how table data distributes through the Citus cluster and cannot be modified in a way that would change data distribution.

-- Cannot be executed against a distribution column

-- Removing a column

ALTER TABLE products DROP COLUMN description;

-- Changing column data type

ALTER TABLE products ALTER COLUMN price TYPE numeric(10,2);

-- Renaming a column

ALTER TABLE products RENAME COLUMN product_no TO product_number;








Adding/Removing Constraints

Using Citus allows you to continue to enjoy the safety of a relational database, including database constraints (see the PostgreSQL docs [https://www.postgresql.org/docs/current/static/ddl-constraints.html]). Due to the nature of distributed systems, Citus will not cross-reference uniqueness constraints or referential integrity between worker nodes. Foreign keys must always be declared between colocated tables. To do this, use compound foreign keys that include the distribution column.

This example, excerpted from a Typical Multi-Tenant Schema, shows how to create primary and foreign keys on distributed tables.

--
-- Adding a primary key
-- --------------------

-- Ultimately we'll distribute these tables on the account id, so the
-- ads and clicks tables use compound keys to include it.

ALTER TABLE accounts ADD PRIMARY KEY (id);
ALTER TABLE ads ADD PRIMARY KEY (account_id, id);
ALTER TABLE clicks ADD PRIMARY KEY (account_id, id);

-- Next distribute the tables
-- (primary keys must be created prior to distribution)

SELECT create_distributed_table('accounts',  'id');
SELECT create_distributed_table('ads',       'account_id');
SELECT create_distributed_table('clicks',    'account_id');

--
-- Adding foreign keys
-- -------------------

-- Note that this can happen before or after distribution, as long as
-- there exists a uniqueness constraint on the target column(s) which
-- can only be enforced before distribution.

ALTER TABLE ads ADD CONSTRAINT ads_account_fk
  FOREIGN KEY (account_id) REFERENCES accounts (id);
ALTER TABLE clicks ADD CONSTRAINT clicks_account_fk
  FOREIGN KEY (account_id) REFERENCES accounts (id);





Uniqueness constraints, like primary keys, must be added prior to table distribution.

-- Suppose we want every ad to use a unique image. Notice we can
-- enforce it only per account when we distribute by account id.

ALTER TABLE ads ADD CONSTRAINT ads_unique_image
  UNIQUE (account_id, image_url);





Not-null constraints can always be applied because they require no lookups between workers.

ALTER TABLE ads ALTER COLUMN image_url SET NOT NULL;








Adding/Removing Indices

Citus supports adding and removing indices [https://www.postgresql.org/docs/current/static/sql-createindex.html]:

-- Adding an index

CREATE INDEX clicked_at_idx ON clicks USING BRIN (clicked_at);

-- Removing an index

DROP INDEX clicked_at_idx;





Adding an index takes a write lock, which can be undesirable in a multi-tenant “system-of-record.” To minimize application downtime, create the index concurrently [https://www.postgresql.org/docs/current/static/sql-createindex.html#SQL-CREATEINDEX-CONCURRENTLY] instead. This method requires more total work than a standard index build and takes significantly longer to complete. However, since it allows normal operations to continue while the index is built, this method is useful for adding new indexes in a production environment.

-- Adding an index without locking table writes

CREATE INDEX CONCURRENTLY clicked_at_idx ON clicks USING BRIN (clicked_at);








Manual Modification

Currently other DDL commands are not auto-propagated, however you can propagate the changes manually using this general four-step outline:


	Begin a transaction and take an ACCESS EXCLUSIVE lock on coordinator node against the table in question.

	In a separate connection, connect to each worker node and apply the operation to all shards.

	Disable DDL propagation on the coordinator and run the DDL command there.

	Commit the transaction (which will release the lock).



Contact us for guidance about the process, we have internal tools which can make it easier.
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Ingesting, Modifying Data (DML)

The following code snippets use the Github events example, see Creating and Modifying Distributed Tables (DDL).


Inserting Data


Single Row Inserts

To insert data into distributed tables, you can use the standard PostgreSQL INSERT [http://www.postgresql.org/docs/current/static/sql-insert.html] commands. As an example, we pick two rows randomly from the Github Archive dataset.

INSERT INTO github_events VALUES (2489373118,'PublicEvent','t',24509048,'{}','{"id": 24509048, "url": "https://api.github.com/repos/SabinaS/csee6868", "name": "SabinaS/csee6868"}','{"id": 2955009, "url": "https://api.github.com/users/SabinaS", "login": "SabinaS", "avatar_url": "https://avatars.githubusercontent.com/u/2955009?", "gravatar_id": ""}',NULL,'2015-01-01 00:09:13');

INSERT INTO github_events VALUES (2489368389,'WatchEvent','t',28229924,'{"action": "started"}','{"id": 28229924, "url": "https://api.github.com/repos/inf0rmer/blanket", "name": "inf0rmer/blanket"}','{"id": 1405427, "url": "https://api.github.com/users/tategakibunko", "login": "tategakibunko", "avatar_url": "https://avatars.githubusercontent.com/u/1405427?", "gravatar_id": ""}',NULL,'2015-01-01 00:00:24');





When inserting rows into distributed tables, the distribution column of the row being inserted must be specified. Based on the distribution column, Citus determines the right shard to which the insert should be routed to. Then, the query is forwarded to the right shard, and the remote insert command is executed on all the replicas of that shard.




Multi-Row Inserts

Sometimes it’s convenient to put multiple insert statements together into a single insert of multiple rows. It can also be more efficient than making repeated database queries. For instance, the example from the previous section can be loaded all at once like this:

INSERT INTO github_events VALUES (
  2489373118,'PublicEvent','t',24509048,'{}','{"id": 24509048, "url": "https://api.github.com/repos/SabinaS/csee6868", "name": "SabinaS/csee6868"}','{"id": 2955009, "url": "https://api.github.com/users/SabinaS", "login": "SabinaS", "avatar_url": "https://avatars.githubusercontent.com/u/2955009?", "gravatar_id": ""}',NULL,'2015-01-01 00:09:13'
  ), (
    2489368389,'WatchEvent','t',28229924,'{"action": "started"}','{"id": 28229924, "url": "https://api.github.com/repos/inf0rmer/blanket", "name": "inf0rmer/blanket"}','{"id": 1405427, "url": "https://api.github.com/users/tategakibunko", "login": "tategakibunko", "avatar_url": "https://avatars.githubusercontent.com/u/1405427?", "gravatar_id": ""}',NULL,'2015-01-01 00:00:24'
  );








Bulk Loading

Sometimes, you may want to bulk load many rows together into your distributed tables. To bulk load data from a file, you can directly use PostgreSQL’s \COPY command [http://www.postgresql.org/docs/current/static/app-psql.html#APP-PSQL-META-COMMANDS-COPY].

First download our example github_events dataset by running:

wget http://examples.citusdata.com/github_archive/github_events-2015-01-01-{0..5}.csv.gz
gzip -d github_events-2015-01-01-*.gz





Then, you can copy the data using psql:

\COPY github_events FROM 'github_events-2015-01-01-0.csv' WITH (format CSV)






Note

There is no notion of snapshot isolation across shards, which means that a multi-shard SELECT that runs concurrently with a COPY might see it committed on some shards, but not on others. If the user is storing events data, he may occasionally observe small gaps in recent data. It is up to applications to deal with this if it is a problem (e.g.  exclude the most recent data from queries, or use some lock).

If COPY fails to open a connection for a shard placement then it behaves in the same way as INSERT, namely to mark the placement(s) as inactive unless there are no more active placements. If any other failure occurs after connecting, the transaction is rolled back and thus no metadata changes are made.






Distributed Aggregations

Applications like event data pipelines and real-time dashboards require sub-second queries on large volumes of data. One way to make these queries fast is by calculating and saving aggregates ahead of time. This is called “rolling up” the data and it avoids the cost of processing raw data at run-time. As an extra benefit, rolling up timeseries data into hourly or daily statistics can also save space. Old data may be deleted when its full details are no longer needed and aggregates suffice.

For example, here is a distributed table for tracking page views by url:

CREATE TABLE page_views (
  site_id int,
  url text,
  host_ip inet,
  view_time timestamp default now(),

  PRIMARY KEY (site_id, url)
);

SELECT create_distributed_table('page_views', 'site_id');





Once the table is populated with data, we can run an aggregate query to count page views per URL per day, restricting to a given site and year.

-- how many views per url per day on site 5?
SELECT view_time::date AS day, site_id, url, count(*) AS view_count
  FROM page_views
  WHERE site_id = 5 AND
    view_time >= date '2016-01-01' AND view_time < date '2017-01-01'
  GROUP BY view_time::date, site_id, url;





The setup described above works, but has two drawbacks. First, when you repeatedly execute the aggregate query, it must go over each related row and recompute the results for the entire data set. If you’re using this query to render a dashboard, it’s faster to save the aggregated results in a daily page views table and query that table. Second, storage costs will grow proportionally with data volumes and the length of queryable history. In practice, you may want to keep raw events for a short time period and look at historical graphs over a longer time window.

To receive those benefits, we can create a daily_page_views table to store the daily statistics.

CREATE TABLE daily_page_views (
  site_id int,
  day date,
  url text,
  view_count bigint,
  PRIMARY KEY (site_id, day, url)
);

SELECT create_distributed_table('daily_page_views', 'site_id');





In this example, we distributed both page_views and daily_page_views on the site_id column. This ensures that data corresponding to a particular site will be co-located on the same node. Keeping the two tables’ rows together on each node minimizes network traffic between nodes and enables highly parallel execution.

Once we create this new distributed table, we can then run INSERT INTO ... SELECT to roll up raw page views into the aggregated table. In the following, we aggregate page views each day. Citus users often wait for a certain time period after the end of day to run a query like this, to accommodate late arriving data.

-- roll up yesterday's data
INSERT INTO daily_page_views (day, site_id, url, view_count)
  SELECT view_time::date AS day, site_id, url, count(*) AS view_count
  FROM page_views
  WHERE view_time >= date '2017-01-01' AND view_time < date '2017-01-02'
  GROUP BY view_time::date, site_id, url;

-- now the results are available right out of the table
SELECT day, site_id, url, view_count
  FROM daily_page_views
  WHERE site_id = 5 AND
    day >= date '2016-01-01' AND day < date '2017-01-01';





It’s worth noting that for INSERT INTO ... SELECT to work on distributed tables, Citus requires the source and destination table to be co-located. In summary:


	The tables queried and inserted are distributed by analogous columns

	The select query includes the distribution column

	The insert statement includes the distribution column



The rollup query above aggregates data from the previous day and inserts it into daily_page_views. Running the query once each day means that no rollup tables rows need to be updated, because the new day’s data does not affect previous rows.

The situation changes when dealing with late arriving data, or running the rollup query more than once per day. If any new rows match days already in the rollup table, the matching counts should increase. PostgreSQL can handle this situation with “ON CONFLICT,” which is its technique for doing upserts [https://www.postgresql.org/docs/9.5/static/sql-insert.html#SQL-ON-CONFLICT]. Here is an example.

-- roll up from a given date onward,
-- updating daily page views when necessary
INSERT INTO daily_page_views (day, site_id, url, view_count)
  SELECT view_time::date AS day, site_id, url, count(*) AS view_count
  FROM page_views
  WHERE view_time >= date '2017-01-01'
  GROUP BY view_time::date, site_id, url
  ON CONFLICT (day, url, site_id) DO UPDATE SET
    view_count = daily_page_views.view_count + EXCLUDED.view_count;










Single-Shard Updates and Deletion

You can update or delete rows from your tables, using the standard PostgreSQL UPDATE [http://www.postgresql.org/docs/current/static/sql-update.html] and DELETE [http://www.postgresql.org/docs/current/static/sql-delete.html] commands.

UPDATE github_events SET org = NULL WHERE repo_id = 24509048;
DELETE FROM github_events WHERE repo_id = 24509048;





Currently, Citus requires that standard UPDATE or DELETE statements involve exactly one shard. This means commands must include a WHERE qualification on the distribution column that restricts the query to a single shard. Such qualifications usually take the form of an equality clause on the table’s distribution column. To update or delete across shards see the section below.




Cross-Shard Updates and Deletion

The most flexible way to modify or delete rows throughout a Citus cluster is the master_modify_multiple_shards command. It takes a regular SQL statement as argument and runs it on all workers:

SELECT master_modify_multiple_shards(
  'DELETE FROM github_events WHERE repo_id IN (24509048, 24509049)');





This uses a two-phase commit to remove or update data safely everywhere. Unlike the standard UPDATE statement, Citus allows it to operate on more than one shard. To learn more about the function, its arguments and its usage, please visit the Citus Utility Function Reference section of our documentation.




Maximizing Write Performance

Both INSERT and UPDATE/DELETE statements can be scaled up to around 50,000 queries per second on large machines. However, to achieve this rate, you will need to use many parallel, long-lived connections and consider how to deal with locking. For more information, you can consult the Scaling Out Data Ingestion section of our documentation.
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Querying Distributed Tables (SQL)

As discussed in the previous sections, Citus is an extension which extends the latest PostgreSQL for distributed execution. This means that you can use standard PostgreSQL SELECT [http://www.postgresql.org/docs/current/static/sql-select.html] queries on the Citus coordinator for querying. Citus will then parallelize the SELECT queries involving complex selections, groupings and orderings, and JOINs to speed up the query performance. At a high level, Citus partitions the SELECT query into smaller query fragments, assigns these query fragments to workers, oversees their execution, merges their results (and orders them if needed), and returns the final result to the user.

In the following sections, we discuss the different types of queries you can run using Citus.


Aggregate Functions

Citus supports and parallelizes most aggregate functions supported by PostgreSQL. Citus’s query planner transforms the aggregate into its commutative and associative form so it can be parallelized. In this process, the workers run an aggregation query on the shards and the coordinator then combines the results from the workers to produce the final output.


Count (Distinct) Aggregates

Citus supports count(distinct) aggregates in several ways. If the count(distinct) aggregate is on the distribution column, Citus can directly push down the query to the workers. If not, Citus needs to repartition the underlying data in the cluster to parallelize count(distinct) aggregates and avoid pulling all rows to the coordinator.

To address the common use case of count(distinct) approximations, Citus provides an option of using the HyperLogLog algorithm to efficiently calculate approximate values for the count distincts on non-distribution key columns.

To enable count distinct approximations, you can follow the steps below:


	Download and install the hll extension on all PostgreSQL instances (the coordinator and all the workers).



Please visit the PostgreSQL hll github repository [https://github.com/aggregateknowledge/postgresql-hll] for specifics on obtaining the extension.


	Create the hll extension on all the PostgreSQL instances



CREATE EXTENSION hll;






	Enable count distinct approximations by setting the citus.count_distinct_error_rate configuration value. Lower values for this configuration setting are expected to give more accurate results but take more time for computation. We recommend setting this to 0.005.



SET citus.count_distinct_error_rate to 0.005;





After this step, you should be able to run approximate count distinct queries on any column of the table.




HyperLogLog Column

Certain users already store their data as HLL columns. In such cases, they can dynamically roll up those data by creating custom aggregates within Citus.

As an example, if you want to run the hll_union aggregate function on your data stored as hll, you can define an aggregate function like below :

CREATE AGGREGATE sum (hll)
(
sfunc = hll_union_trans,
stype = internal,
finalfunc = hll_pack
);





You can then call sum(hll_column) to roll up those columns within the database. Please note that these custom aggregates need to be created both on the coordinator and the workers.






Limit Pushdown

Citus also pushes down the limit clauses to the shards on the workers wherever possible to minimize the amount of data transferred across network.

However, in some cases, SELECT queries with LIMIT clauses may need to fetch all rows from each shard to generate exact results. For example, if the query requires ordering by the aggregate column, it would need results of that column from all shards to determine the final aggregate value. This reduces performance of the LIMIT clause due to high volume of network data transfer. In such cases, and where an approximation would produce meaningful results, Citus provides an option for network efficient approximate LIMIT clauses.

LIMIT approximations are disabled by default and can be enabled by setting the configuration parameter citus.limit_clause_row_fetch_count. On the basis of this configuration value, Citus will limit the number of rows returned by each task for aggregation on the coordinator. Due to this limit, the final results may be approximate. Increasing this limit will increase the accuracy of the final results, while still providing an upper bound on the number of rows pulled from the workers.

SET citus.limit_clause_row_fetch_count to 10000;








Joins

Citus supports equi-JOINs between any number of tables irrespective of their size and distribution method. The query planner chooses the optimal join method and join order based on the statistics gathered from the distributed tables. It evaluates several possible join orders and creates a join plan which requires minimum data to be transferred across network.

To determine the best join strategy, Citus treats large and small tables differently while executing JOINs. The distributed tables are classified as large and small on the basis of the configuration entry citus.large_table_shard_count (default value: 4). The tables whose shard count exceeds this value are considered as large while the others small. In practice, the fact tables are generally the large tables while the dimension tables are the small tables.


Broadcast joins

This join type is used while joining small tables with each other or with a large table. This is a very common use case where you want to join the keys in the fact tables (large table) with their corresponding dimension tables (small tables). Citus replicates the small table to all workers where the large table’s shards are present. Then, all the joins are performed locally on the workers in parallel. Subsequent join queries that involve the small table then use these cached shards.




Co-located joins

To join two large tables efficiently, it is advised that you distribute them on the same columns you used to join the tables. In this case, the Citus coordinator knows which shards of the tables might match with shards of the other table by looking at the distribution column metadata. This allows Citus to prune away shard pairs which cannot produce matching join keys. The joins between remaining shard pairs are executed in parallel on the workers and then the results are returned to the coordinator.


Note

In order to benefit most from co-located joins, you should hash distribute your tables on the join key and use the same number of shards for both tables. If you do this, each shard will join with exactly one shard of the other table. Also, the shard creation logic will ensure that shards with the same distribution key ranges are on the same workers. This means no data needs to be transferred between the workers, leading to faster joins.






Repartition joins

In some cases, you may need to join two tables on columns other than the distribution column. For such cases, Citus also allows joining on non-distribution key columns by dynamically repartitioning the tables for the query.

In such cases the table(s) to be partitioned are determined by the query optimizer on the basis of the distribution columns, join keys and sizes of the tables. With repartitioned tables, it can be ensured that only relevant shard pairs are joined with each other reducing the amount of data transferred across network drastically.

In general, co-located joins are more efficient than repartition joins as repartition joins require shuffling of data. So, you should try to distribute your tables by the common join keys whenever possible.






Query Performance

Citus parallelizes incoming queries by breaking it into multiple fragment queries (“tasks”) which run on the worker shards in parallel. This allows Citus to utilize the processing power of all the nodes in the cluster and also of individual cores on each node for each query. Due to this parallelization, you can get performance which is cumulative of the computing power of all of the cores in the cluster leading to a dramatic decrease in query times versus PostgreSQL on a single server.

Citus employs a two stage optimizer when planning SQL queries. The first phase involves converting the SQL queries into their commutative and associative form so that they can be pushed down and run on the workers in parallel. As discussed in previous sections, choosing the right distribution column and distribution method allows the distributed query planner to apply several optimizations to the queries. This can have a significant impact on query performance due to reduced network I/O.

Citus’s distributed executor then takes these individual query fragments and sends them to worker PostgreSQL instances. There are several aspects of both the distributed planner and the executor which can be tuned in order to improve performance. When these individual query fragments are sent to the workers, the second phase of query optimization kicks in. The workers are simply running extended PostgreSQL servers and they apply PostgreSQL’s standard planning and execution logic to run these fragment SQL queries. Therefore, any optimization that helps PostgreSQL also helps Citus. PostgreSQL by default comes with conservative resource settings; and therefore optimizing these configuration settings can improve query times significantly.

We discuss the relevant performance tuning steps in the Query Performance Tuning section of the documentation.
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PostgreSQL extensions

Citus provides distributed functionality by extending PostgreSQL using the hook and extension APIs. This allows users to benefit from the features that come with the rich PostgreSQL ecosystem. These features include, but aren’t limited to, support for a wide range of data types [http://www.postgresql.org/docs/current/static/datatype.html] (including semi-structured data types like jsonb and hstore), operators and functions [http://www.postgresql.org/docs/current/static/functions.html], full text search, and other extensions such as PostGIS [http://postgis.net/] and HyperLogLog [https://github.com/aggregateknowledge/postgresql-hll]. Further, proper use of the extension APIs enable compatibility with standard PostgreSQL tools such as pgAdmin [http://www.pgadmin.org/], pg_backup [http://www.postgresql.org/docs/current/static/backup.html], and pg_upgrade [http://www.postgresql.org/docs/current/static/pgupgrade.html].

As Citus is an extension which can be installed on any PostgreSQL instance, you can directly use other extensions such as hstore, hll, or PostGIS with Citus. However, there are two things to keep in mind. First, while including other extensions in shared_preload_libraries, you should make sure that Citus is the first extension. Secondly, you should create the extension on both the coordinator and the workers before starting to use it.


Note

Sometimes, there might be a few features of the extension that may not be supported out of the box. For example, a few aggregates in an extension may need to be modified a bit to be parallelized across multiple nodes. Please contact us [https://www.citusdata.com/about/contact_us] if some feature from your favourite extension does not work as expected with Citus.







          

      

      

    


    
        © Copyright 2017, Citus Data.
    

  

    
      Navigation

      
        	
          index

        	
          next |

        	
          previous |

        	Citus 7.0.2 documentation »
 
      

    


    
      
          
            
  Migrating an existing relational store to Citus sometimes requires adjusting the schema and queries for optimal performance. Citus extends PostgreSQL with distributed functionality, but it is not a drop-in replacement that scales out all workloads. A performant Citus cluster involves thinking about the data model, tooling, and choice of SQL features used.

Migration tactics differ between the two main Citus use cases of multi-tenant applications and real-time analytics. The former requires fewer data model changes so we’ll begin there.


Multi-tenant Data Model

Citus is well suited to hosting B2B multi-tenant application data. In this model application tenants share a Citus cluster and a schema. Each tenant’s table data is stored in a shard determined by a configurable tenant id column. Citus pushes queries down to run directly on the relevant tenant shard in the cluster, spreading out the computation. Once queries are routed this way they can be executed without concern for the rest of the cluster. These queries can use the full features of SQL, including joins and transactions, without running into the inherent limitations of a distributed system.

This section will explore how to model for the multi-tenant scenario, including necessary adjustments to the schema and queries.


Schema Migration

Transitioning from a standalone database instance to a sharded multi-tenant system requires identifying and modifying three types of tables which we may term per-tenant, reference, and global. The distinction hinges on whether the tables have (or reference) a column serving as tenant id. The concept of tenant id depends on the application and who exactly are considered its tenants.

Consider an example multi-tenant application similar to Etsy or Shopify where each tenant is a store. Here’s a portion of a simplified schema:


[image: Schema before migration]
(Underlined items are primary keys, italicized items are foreign keys.)



In our example each store is a natural tenant. This is because storefronts benefit from dedicated processing power for their customer data, and stores do not need to access each other’s sales or inventory. The tenant id is in this case the store id. We want to distribute data in the cluster in such a way that rows from the above tables in our schema reside on the same node whenever the rows share a store id.

The first step is preparing the tables for distribution. Citus requires that primary keys contain the distribution column, so we must modify the primary keys of these tables and make them compound including a store id. Making primary keys compound will require modifying the corresponding foreign keys as well.

In our example the stores and products tables are already in perfect shape. The orders table needs slight modification: updating the primary and foreign keys to include store_id. The line_items table needs the biggest change. Being normalized, it lacks a store id. We must add that column, and include it in the primary key constraint.

Here are SQL commands to accomplish these changes:

BEGIN;

-- denormalize line_items by including store_id

ALTER TABLE line_items ADD COLUMN store_id uuid;

-- drop simple primary keys (cascades to foreign keys)

ALTER TABLE products   DROP CONSTRAINT products_pkey CASCADE;
ALTER TABLE orders     DROP CONSTRAINT orders_pkey CASCADE;
ALTER TABLE line_items DROP CONSTRAINT line_items_pkey CASCADE;

-- recreate primary keys to include would-be distribution column

ALTER TABLE products   ADD PRIMARY KEY (store_id, product_id);
ALTER TABLE orders     ADD PRIMARY KEY (store_id, order_id);
ALTER TABLE line_items ADD PRIMARY KEY (store_id, line_item_id);

-- recreate foreign keys to include would-be distribution column

ALTER TABLE line_items ADD CONSTRAINT line_items_store_fkey
  FOREIGN KEY (store_id) REFERENCES stores (store_id);
ALTER TABLE line_items ADD CONSTRAINT line_items_product_fkey
  FOREIGN KEY (store_id, product_id) REFERENCES products (store_id, product_id);
ALTER TABLE line_items ADD CONSTRAINT line_items_order_fkey
  FOREIGN KEY (store_id, order_id) REFERENCES orders (store_id, order_id);

COMMIT;





When the job is complete our schema will look like this:


[image: Schema after migration]
(Underlined items are primary keys, italicized items are foreign keys.)



We call the tables considered so far per-tenant because querying them for our use case requires information for only one tenant per query. Their rows are distributed across the cluster according to the hashed values of their tenant ids.

There are other types of tables to consider during a transition to Citus. Some are system-wide tables such as information about site administrators. We call them global tables and they do not participate in join queries with the per-tenant tables and may remain on the Citus coordinator node unmodified.

Another kind of table are those which join with per-tenant tables but which aren’t naturally specific to any one tenant. We call them reference tables. Two examples are shipping regions and product categories. We advise that you add a tenant id to these tables and duplicate the original rows, once for each tenant. This ensures that reference data is co-located with per-tenant data and quickly accessible to queries.




Backfilling Tenant ID

Once the schema is updated and the per-tenant and reference tables are distributed across the cluster it’s time to copy data from the original database into Citus. Most per-tenant tables can be copied directly from source tables. However line_items was denormalized with the addition of the store_id column. We have to “backfill” the correct values into this column.

We join orders and line_items to output the data we need including the backfilled store_id column. The results can go into a file for later import into Citus.

-- This query gets line item information along with matching store_id values.
-- You can save the result to a file for later import into Citus.

SELECT orders.store_id AS store_id, line_items.*
  FROM line_items, orders
 WHERE line_items.order_id = orders.order_id





To learn how to ingest datasets such as the one generated above into a Citus cluster, see Ingesting, Modifying Data (DML).




Query Migration

To execute queries efficiently for a specific tenant Citus needs to route them to the appropriate node and run them there. Thus every query must identify which tenant it involves. For simple select, update, and delete queries this means that the where clause must filter by tenant id.

Suppose we want to get the details for an order. It used to suffice to filter by order_id. However once orders are distributed by store_id we must include that in the where filter as well.

-- before
SELECT * FROM orders WHERE order_id = 123;

-- after
SELECT * FROM orders WHERE order_id = 123 AND store_id = 42;





Likewise insert statements must always include a value for the tenant id column. Citus inspects that value for routing the insert command.

When joining tables make sure to filter by tenant id. For instance here is how to inspect how many awesome wool pants a given store has sold:

-- One way is to include store_id in the join and also
-- filter by it in one of the queries

SELECT sum(l.quantity)
  FROM line_items l
 INNER JOIN products p
    ON l.product_id = p.product_id
   AND l.store_id = p.store_id
 WHERE p.name='Awesome Wool Pants'
   AND l.store_id='8c69aa0d-3f13-4440-86ca-443566c1fc75'

-- Equivalently you omit store_id from the join condition
-- but filter both tables by it. This may be useful if
-- building the query in an ORM

SELECT sum(l.quantity)
  FROM line_items l
 INNER JOIN products p ON l.product_id = p.product_id
 WHERE p.name='Awesome Wool Pants'
   AND l.store_id='8c69aa0d-3f13-4440-86ca-443566c1fc75'
   AND p.store_id='8c69aa0d-3f13-4440-86ca-443566c1fc75'






Validating Query Migration

With large and complex application code-bases, certain queries generated by the application can often be overlooked, and thus won’t have a tenant_id filter on them. Citus’ parallel executor will still execute these queries successfully, and so, during testing, these queries remain hidden since the application still works fine. However, if a query doesn’t contain the tenant_id filter, Citus’ executor will hit every shard in parallel, but only one will return any data.  This consumes resources needlessly, and may exhibit itself as a problem only when one moves to a higher-throughput production environment.

To prevent encoutering such issues only after launching in production, one can set a config value to log queries which hit more than one shard. In a properly configured and migrated multi-tenant application, each query should only hit one shard at a time.

During testing, one can configure the following:

SET citus.multi_task_query_log_level = 'error';





Citus will then error out if it encounters queries which are going to hit more than one shard. Erroring out during testing allows the application developer to find and migrate such queries.

During a production launch, one can configure the same setting to warn, instead of error out:

SET citus.multi_task_query_log_level = 'warning';





The configuration parameter section has more info on supported values for this setting.






App Migration


Ruby on Rails

Above, we discussed the framework-agnostic database changes required
for using Citus in the multi-tenant use case. This section investigates
specifically how to migrate multi-tenant Rails applications to a
Citus storage backend. We’ll use the activerecord-multi-tenant [https://github.com/citusdata/activerecord-multi-tenant] Ruby gem for
easier scale-out.

This Ruby gem has evolved from our experience working with customers
scaling out their multi-tenant apps. It patches some restrictions
that ActiveRecord and Rails currently have when it comes to automatic
query building. It is based on the excellent acts_as_tenant [https://github.com/ErwinM/acts_as_tenant] library, and extends it
for the particular use-case of a distributed multi-tenant database like
Citus.


Preparing to scale-out a multi-tenant application

Initially you’ll often start out with all tenants placed on a single
database node, and using a framework like Ruby on Rails and ActiveRecord
to load the data for a given tenant when you serve a web request that
returns the tenant’s data.

ActiveRecord makes a few assumptions about the data storage that limit
your scale-out options. In particular, ActiveRecord introduces a pattern
where you normalize data and split it into many distinct models each
identified by a single id column, with multiple belongs_to
relationships that tie objects back to a tenant or customer:

# typical pattern with multiple belongs_to relationships

class Customer < ActiveRecord::Base
  has_many :sites
end
class Site < ActiveRecord::Base
  belongs_to :customer
  has_many :page_views
end
class PageView < ActiveRecord::Base
  belongs_to :site
end





The tricky thing with this pattern is that in order to find all page
views for a customer, you’ll have to query for all of a customer’s sites
first. This becomes a problem once you start sharding data, and in
particular when you run UPDATE or DELETE queries on nested models like
page views in this example.

There are a few steps you can take today, to make scaling out easier in
the future:

1. Introduce a column for the tenant_id on every record that belongs
to a tenant

In order to scale out a multi-tenant model, it’s essential you can locate
all records that belong to a tenant quickly. The easiest way to achieve
this is to simply add a tenant_id column (or “customer_id” column,
etc) on every object that belongs to a tenant, and backfilling your
existing data to have this column set correctly.

When you move to a distributed multi-tenant database like Citus in the
future, this will be a required step - but if you’ve done this before,
you can simply COPY over your data, without doing any additional data
modification.

2. Use UNIQUE constraints which include the tenant_id

Unique and foreign-key constraints on values other than the tenant_id
will present a problem in any distributed system, since it’s difficult
to make sure that no two nodes accept the same unique value. Enforcing
the constraint would require expensive scans of the data across all
nodes.

To solve this problem, for the models which are logically related
to a store (the tenant for our app), you should add store_id to
the constraints, effectively scoping objects unique inside a given
store. This helps add the concept of tenancy to your models, thereby
making the multi-tenant system more robust.

For example, Rails creates a primary key by default, that only includes
the id of the record:

Indexes:
    "page_views_pkey" PRIMARY KEY, btree (id)





You should modify that primary key to also include the tenant_id:

ALTER TABLE page_views DROP CONSTRAINT page_views_pkey;
ALTER TABLE page_views ADD PRIMARY KEY(id, customer_id);





An exception to this rule might be an email or username column on a
users table (unless you give each tenant their own login page), which is
why, once you scale out, we typically recommend these to be split out
from your distributed tables and placed as a local table on the Citus
coordinator node.

3. Include the tenant_id in all queries, even when you can locate an
object using its own object_id

The easiest way to run a typical SQL query in a distributed system
without restrictions is to always access data that lives on a single
node, determined by the tenant you are accessing.

For this reason, once you use a distributed system like Citus, we
recommend you always specify both the tenant_id and an object’s own ID
for queries, so the coordinator can locate your data quickly, and can
route the query to a single shard - instead of going to each shard in
the system individually and asking the shard whether it knows the given
object_id.




Updating the Rails Application

You can get started by including gem 'activerecord-multi-tenant'
into your Gemfile, running bundle install, and then annotating your
ActiveRecord models like this:

class PageView < ActiveRecord::Base
  multi_tenant :customer
  # ...
end





In this case customer is the tenant model, and your page_views
table needs to have a customer_id column that references the
customer the page view belongs to.

The activerecord-multi-tenant [https://github.com/citusdata/activerecord-multi-tenant] Gem aims to
make it easier to implement the above data changes in a typical Rails
application.

As mentioned in the beginning, by adding multi_tenant :customer
annotations to your models, the library automatically takes care of
including the tenant_id with all queries.

In order for that to work, you’ll always need to specify which tenant
you are accessing, either by specifying it on a per-request basis:

class ApplicationController < ActionController::Base
  # Opt-into the "set_current_tenant" controller helpers by specifying this:
  set_current_tenant_through_filter

  before_filter :set_customer_as_tenant

  def set_customer_as_tenant
    customer = Customer.find(session[:current_customer_id])
    set_current_tenant(customer) # Set the tenant
  end
end





Or by wrapping your code in a block, e.g. for background and maintenance
tasks:

customer = Customer.find(session[:current_customer_id])
# ...
MultiTenant.with(customer) do
  site = Site.find(params[:site_id])

  # Modifications automatically include tenant_id
  site.update! last_accessed_at: Time.now

  # Queries also include tenant_id automatically
  site.page_views.count
end





Once you are ready to use a distributed multi-tenant database like
Citus, all you need is a few adjustments to your migrations, and you’re
good to go:

class InitialTables < ActiveRecord::Migration
  def up
    create_table :page_views, partition_key: :customer_id do |t|
      t.references :customer, null: false
      t.references :site, null: false

      t.text :url, null: false
      ...
      t.timestamps null: false
    end
    create_distributed_table :page_views, :account_id
  end

  def down
    drop_table :page_views
  end
end





Note the partition_key: :customer_id, something that’s
added to Rails’ create_table by our library, which ensures
that the primary key includes the tenant_id column, as well as
create_distributed_table which enables Citus to scale out the data
to multiple nodes.




Example Application

If you are interested in a more complete
example, check out our reference app [https://github.com/citusdata/citus-example-ad-analytics] that
showcases a simplified sample SaaS application for ad analytics.

[image: ../_images/rails-ref-app.png]
As you can see in the screenshot, most data is associated to the
currently logged in customer - even though this is complex analytical
data, all data is accessed in the context of a single customer or
tenant.






Django

At the start of this section we discussed the framework-agnostic database changes required for using Citus in the multi-tenant use case. This section investigates specifically how to migrate multi-tenant Django applications to a Citus storage backend.


Preparing to scale-out a multi-tenant application

Initially you’ll often start with all tenants placed on a single database node, and using a framework like Django to load the data for a given tenant when you serve a web request that returns the tenant’s data.

Django’s typical conventions make a few assumptions about the data storage that limit scale-out options. In particular, the ORM introduces a pattern where you normalize data and split it into many distinct models each identified by a single id column (usually added implicitly by the ORM). For instance, consider this simplified model:

from django.utils import timezone
from django.db import models

class Store(models.Model):
    name = models.CharField(max_length=255)
    url = models.URLField()

class Product(models.Model):
    name = models.CharField(max_length=255)
    description = models.TextField()
    price = models.DecimalField(max_digits=6, decimal_places=2),
    quantity = models.IntegerField()
    store = models.ForeignKey(Store)

class Purchase(models.Model):
    ordered_at = models.DateTimeField(default=timezone.now)
    billing_address = models.TextField()
    shipping_address = models.TextField()

    product = models.ForeignKey(Product)





The tricky thing with this pattern is that in order to find all purchases for a store, you’ll have to query for all of a store’s products first. This becomes a problem once you start sharding data, and in particular when you run UPDATE or DELETE queries on nested models like purchases in this example.

1. Introduce a column for the store_id on every record that belongs to a store

In order to scale out a multi-tenant model, it’s essential that you can locate all records that belong to a store quickly. The easiest way to achieve this is to simply add a store_id column on every object that belongs to a store, and backfill your existing data to have this column set correctly.

2. Use UNIQUE constraints which include the store_id

Unique and foreign-key constraints on values other than the tenant_id
will present a problem in any distributed system, since it’s difficult
to make sure that no two nodes accept the same unique value. Enforcing
the constraint would require expensive scans of the data across all
nodes.

To solve this problem, for the models which are logically related
to a store (the tenant for our app), you should add store_id to
the constraints, effectively scoping objects unique inside a given
store. This helps add the concept of tenancy to your models, thereby
making the multi-tenant system more robust.

Let’s begin by adjusting our model definitions and have Django generate a new migration for the two changes discussed.

from django.utils import timezone
from django.db import models

class Store(models.Model):
  name = models.CharField(max_length=255)
  url = models.URLField()

class Product(models.Model):
  name = models.CharField(max_length=255)
  description = models.TextField()
  price = models.DecimalField(max_digits=6, decimal_places=2),
  quantity = models.IntegerField()
  store = models.ForeignKey(Store)

  class Meta(object):                  # added
    unique_together = ["id", "store"]  #

class Purchase(models.Model):
  ordered_at = models.DateTimeField(default=timezone.now)
  billing_address = models.TextField()
  shipping_address = models.TextField()

  product = models.ForeignKey(
    Product,
    db_constraint=False                # added
  )
  store = models.ForeignKey(Store)     # added

  class Meta(object):                  # added
    unique_together = ["id", "store"]  #





Create a migration to reflect the change: ./manage.py makemigrations.

Next we need some custom migrations to adapt the existing key structure in the database for compatibility with Citus. To keep these migrations separate from the ones for the ordinary application, we’ll make a new citus application in the same Django project.

# Make a new sub-application in the project
django-admin startapp citus





Edit appname/settings.py and add 'citus' to the array INSTALLED_APPS.

Next we’ll add a custom migration to remove simple primary keys which will become composite: ./manage.py makemigrations citus --empty --name remove_simple_pk. Edit the result to look like this:

from __future__ import unicode_literals
from django.db import migrations

class Migration(migrations.Migration):
  dependencies = [
    ('appname', '<name of latest migration>')
  ]

  operations = [
    # Django considers "id" the primary key of these tables, but
    # the database mustn't, because the primary key will be composite
    migrations.RunSQL(
      "ALTER TABLE mtdjango_product DROP CONSTRAINT mtdjango_product_pkey;",
      "ALTER TABLE mtdjango_product ADD CONSTRAINT mtdjango_product_pkey PRIMARY KEY (store_id, id)"
    ),
    migrations.RunSQL(
      "ALTER TABLE mtdjango_purchase DROP CONSTRAINT mtdjango_purchase_pkey;",
      "ALTER TABLE mtdjango_purchase ADD CONSTRAINT mtdjango_purchase_pkey PRIMARY KEY (store_id, id)"
    ),
  ]





Next, we’ll make one to tell Citus to mark tables for distribution. ./manage.py makemigrations citus --empty --name distribute_tables. Edit the result to look like this:

from __future__ import unicode_literals
from django.db import migrations

class Migration(migrations.Migration):
  dependencies = [
    # leave this as it was generated
  ]

  operations = [
    migrations.RunSQL(
      "SELECT create_distributed_table('mtdjango_store','id')"
    ),
    migrations.RunSQL(
      "SELECT create_distributed_table('mtdjango_product','store_id')"
    ),
    migrations.RunSQL(
      "SELECT create_distributed_table('mtdjango_purchase','store_id')"
    ),
  ]





Finally, we’ll establish a composite foreign key. ./manage.py makemigrations citus --empty --name composite_fk.

from __future__ import unicode_literals
from django.db import migrations

class Migration(migrations.Migration):
  dependencies = [
    # leave this as it was generated
  ]

  operations = [
    migrations.RunSQL(
      """
          ALTER TABLE mtdjango_purchase
          ADD CONSTRAINT mtdjango_purchase_product_fk
          FOREIGN KEY (store_id, product_id)
          REFERENCES mtdjango_product (store_id, id)
          ON DELETE CASCADE;
      """,
      "ALTER TABLE mtdjango_purchase DROP CONSTRAINT mtdjango_purchase_product_fk"
    ),
  ]





Apply the migrations by running ./manage.py migrate.

At this point the Django application models are ready to work with a Citus backend. You can continue by importing data to the new system and modifying controllers as necessary to deal with the model changes.




Updating the Django Application

To simplify queries in the Django application, Citus has developed a Python library called django-multitenant [https://github.com/citusdata/django-multitenant] (still in beta as of this writing). Include django-multitenant in the requirements.txt package file for your project, and then modify your models.

First, include the library in models.py:

from django_multitenant import *





Next, change the base class for each model from models.Model to TenantModel, and add a property specifying the name of the tenant id. For instance, to continue the earlier example:

class Store(TenantModel):
  tenant_id = 'id'
  # ...

class Product(TenantModel):
  tenant_id = 'store_id'
  # ...

class Purchase(TenantModel):
  tenant_id = 'store_id'
  # ...





No extra database migration is necessary beyond the steps in the previous section. The library allows application code to easily scope queries to a single tenant. It automatically adds the correct SQL filters to all statements, including fetching objects through relations.

For instance:

# set the current tenant to the first store
s = Store.objects.all()[0]
set_current_tenant(s)

# now this count query applies only to Products for that store
Product.objects.count()

# Find purchases for risky products in the current store
Purchase.objects.filter(product__description='Dangerous Toy')





In the context of an application controller, the current tenant object can be stored as a SESSION variable when a user logs in, and controller actions can set_current_tenant to this value.










Real-Time Analytics Data Model

In this model multiple worker nodes calculate aggregate data in parallel for applications such as analytic dashboards. This scenario requires greater interaction between Citus nodes than the multi-tenant case and the transition from a standalone database varies more per application.

In general you can distribute the tables from an existing schema by following the advice in Query Performance Tuning. This will provide a baseline from which you can measure and interactively improve performance. For more migration guidance please contact us [https://www.citusdata.com/about/contact_us].
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Citus Query Processing

A Citus cluster consists of a coordinator instance and multiple worker instances. The data is sharded and replicated on the workers while the coordinator stores metadata about these shards. All queries issued to the cluster are executed via the coordinator. The coordinator partitions the query into smaller query fragments where each query fragment can be run independently on a shard. The coordinator then assigns the query fragments to workers, oversees their execution, merges their results, and returns the final result to the user. The query processing architecture can be described in brief by the diagram below.

[image: ../_images/citus-high-level-arch.png]
Citus’s query processing pipeline involves the two components:


	Distributed Query Planner and Executor

	PostgreSQL Planner and Executor



We discuss them in greater detail in the subsequent sections.


Distributed Query Planner

Citus’s distributed query planner takes in a SQL query and plans it for distributed execution.

For SELECT queries, the planner first creates a plan tree of the input query and transforms it into its commutative and associative form so it can be parallelized. It also applies several optimizations to ensure that the queries are executed in a scalable manner, and that network I/O is minimized.

Next, the planner breaks the query into two parts - the coordinator query which runs on the coordinator and the worker query fragments which run on individual shards on the workers. The planner then assigns these query fragments to the workers such that all their resources are used efficiently. After this step, the distributed query plan is passed on to the distributed executor for execution.

The planning process for key-value lookups on the distribution column or modification queries is slightly different as they hit exactly one shard. Once the planner receives an incoming query, it needs to decide the correct shard to which the query should be routed. To do this, it extracts the distribution column in the incoming row and looks up the metadata to determine the right shard for the query. Then, the planner rewrites the SQL of that command to reference the shard table instead of the original table. This re-written plan is then passed to the distributed executor.




Distributed Query Executor

Citus’s distributed executors run distributed query plans and handle failures that occur during query execution. The executors connect to the workers, send the assigned tasks to them and oversee their execution. If the executor cannot assign a task to the designated worker or if a task execution fails, then the executor dynamically re-assigns the task to replicas on other workers. The executor processes only the failed query sub-tree, and not the entire query while handling failures.

Citus has two executor types - real time and task tracker. The former is useful for handling simple key-value lookups and INSERT, UPDATE, and DELETE queries, while the task tracker is better suited for larger SELECT queries.


Real-time Executor

The real-time executor is the default executor used by Citus. It is well suited for getting fast responses to queries involving filters, aggregations and co-located joins. The real time executor opens one connection per shard to the workers and sends all fragment queries to them. It then fetches the results from each fragment query, merges them, and gives the final results back to the user.

Since the real time executor maintains an open connection for each shard to which it sends queries, it may reach file descriptor / connection limits while dealing with high shard counts. In such cases, the real-time executor throttles on assigning more tasks to workers to avoid overwhelming them with too many tasks. One can typically increase the file descriptor limit on modern operating systems to avoid throttling, and change Citus configuration to use the real-time executor. But, that may not be ideal for efficient resource management while running complex queries. For queries that touch thousands of shards or require large table joins, you can use the task tracker executor.

Furthermore, when the real time executor detects simple INSERT, UPDATE or DELETE queries it assigns the incoming query to the worker which has the target shard. The query is then handled by the worker PostgreSQL server and the results are returned back to the user. In case a modification fails on a shard replica, the executor marks the corresponding shard replica as invalid in order to maintain data consistency.




Task Tracker Executor

The task tracker executor is well suited for long running, complex data warehousing queries. This executor opens only one connection per worker, and assigns all fragment queries to a task tracker daemon on the worker. The task tracker daemon then regularly schedules new tasks and sees through their completion. The executor on the coordinator regularly checks with these task trackers to see if their tasks completed.

Each task tracker daemon on the workers also makes sure to execute at most citus.max_running_tasks_per_node concurrently. This concurrency limit helps in avoiding disk I/O contention when queries are not served from memory. The task tracker executor is designed to efficiently handle complex queries which require repartitioning and shuffling intermediate data among workers.






PostgreSQL planner and executor

Once the distributed executor sends the query fragments to the workers, they are processed like regular PostgreSQL queries. The PostgreSQL planner on that worker chooses the most optimal plan for executing that query locally on the corresponding shard table. The PostgreSQL executor then runs that query and returns the query results back to the distributed executor. You can learn more about the PostgreSQL planner [http://www.postgresql.org/docs/current/static/planner-optimizer.html] and executor [http://www.postgresql.org/docs/current/static/executor.html] from the PostgreSQL manual. Finally, the distributed executor passes the results to the coordinator for final aggregation.
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Scaling Out Data Ingestion

Citus lets you scale out data ingestion to very high rates, but there are several trade-offs to consider in terms of application integration, throughput, and latency. In this section, we discuss different approaches to data ingestion, and provide guidelines for expected throughput and latency numbers.


Real-time Insert and Updates

On the Citus coordinator, you can perform INSERT, INSERT .. ON CONFLICT, UPDATE, and DELETE commands directly on distributed tables. When you issue one of these commands, the changes are immediately visible to the user.

When you run an INSERT (or another ingest command), Citus first finds the right shard placements based on the value in the distribution column. Citus then connects to the worker nodes storing the shard placements, and performs an INSERT on each of them. From the perspective of the user, the INSERT takes several milliseconds to process because of the network latency to worker nodes. The Citus coordinator node however can process concurrent INSERTs to reach high throughputs.


Insert Throughput

To measure data ingest rates with Citus, we use a standard tool called pgbench and provide repeatable benchmarking steps.

We also used these steps to run pgbench across different Citus Cloud formations on AWS and observed the following ingest rates for transactional INSERT statements. For these benchmark results, we used the default configuration for Citus Cloud formations, and set pgbench’s concurrent thread count to 64 and client count to 256. We didn’t apply any optimizations to improve performance numbers; and you can get higher ingest ratios by tuning your database setup.









	Coordinator Node
	Worker Nodes
	Latency (ms)
	Transactions per sec




	2 cores - 7.5GB RAM
	2 * (1 core - 15GB RAM)
	28.5
	9,000


	4 cores -  15GB RAM
	2 * (1 core - 15GB RAM)
	15.3
	16,600


	8 cores -  30GB RAM
	2 * (1 core - 15GB RAM)
	15.2
	16,700


	8 cores -  30GB RAM
	4 * (1 core - 15GB RAM)
	8.6
	29,600





We have three observations that follow from these benchmark numbers. First, the top row shows performance numbers for an entry level Citus cluster with one c4.xlarge (two physical cores) as the coordinator and two r4.large (one physical core each) as worker nodes. This basic cluster can deliver 9K INSERTs per second, or 775 million transactional INSERT statements per day.

Second, a more powerful Citus cluster that has about four times the CPU capacity can deliver 30K INSERTs per second, or 2.75 billion INSERT statements per day.

Third, across all data ingest benchmarks, the network latency combined with the number of concurrent connections PostgreSQL can efficiently handle, becomes the  performance bottleneck. In a production environment with hundreds of tables and indexes, this bottleneck will likely shift to a different resource.




Update Throughput

To measure UPDATE throughputs with Citus, we used the same benchmarking steps and ran pgbench across different Citus Cloud formations on AWS.









	Coordinator Node
	Worker Nodes
	Latency (ms)
	Transactions per sec




	2 cores - 7.5GB RAM
	2 * (1 core - 15GB RAM)
	25.0
	10,200


	4 cores -  15GB RAM
	2 * (1 core - 15GB RAM)
	19.6
	13,000


	8 cores -  30GB RAM
	2 * (1 core - 15GB RAM)
	20.3
	12,600


	8 cores -  30GB RAM
	4 * (1 core - 15GB RAM)
	10.7
	23,900





These benchmark numbers show that Citus’s UPDATE throughput is slightly lower than those of INSERTs. This is because pgbench creates a primary key index for UPDATE statements and an UPDATE incurs more work on the worker nodes. It’s also worth noting two additional differences between INSERT and UPDATEs.

First, UPDATE statements cause bloat in the database and VACUUM needs to run regularly to clean up this bloat. In Citus, since VACUUM runs in parallel across worker nodes, your workloads are less likely to be impacted by VACUUM.

Second, these benchmark numbers show UPDATE throughput for standard Citus deployments. If you’re on the Citus community edition, using statement-based replication, and you increased the default replication factor to 2, you’re going to observe notably lower UPDATE throughputs. For this particular setting, Citus comes with additional configuration (citus.all_modifications_commutative) that may increase UPDATE ratios.




Insert and Update: Throughput Checklist

When you’re running the above pgbench benchmarks on a moderately sized Citus cluster, you can generally expect 10K-50K INSERTs per second. This translates to approximately 1 to 4 billion INSERTs per day. If you aren’t observing these throughputs numbers, remember the following checklist:


	Check the network latency between your application and your database. High latencies will impact your write throughput.

	Ingest data using concurrent threads. If the roundtrip latency during an INSERT is 4ms, you can process 250 INSERTs/second over one thread. If you run 100 concurrent threads, you will see your write throughput increase with the number of threads.

	Check whether the nodes in your cluster have CPU or disk bottlenecks. Ingested data passes through the coordinator node, so check whether your coordinator is bottlenecked on CPU.

	Avoid closing connections between INSERT statements. This avoids the overhead of connection setup.

	Remember that column size will affect insert speed. Rows with big JSON blobs will take longer than those with small columns like integers.






Insert and Update: Latency

The benefit of running INSERT or UPDATE commands, compared to issuing bulk COPY commands, is that changes are immediately visible to other queries. When you issue an INSERT or UPDATE command, the Citus coordinator node directly routes this command to related worker node(s). The coordinator node also keeps connections to the workers open within the same session, which means subsequent commands will see lower response times.

-- Set up a distributed table that keeps account history information
CREATE TABLE pgbench_history (tid int, bid int, aid int, delta int, mtime timestamp);
SELECT create_distributed_table('pgbench_history', 'aid');

-- Enable timing to see reponse times
\timing on

-- First INSERT requires connection set-up, second will be faster
INSERT INTO pgbench_history VALUES (10, 1, 10000, -5000, CURRENT_TIMESTAMP); -- Time: 10.314 ms
INSERT INTO pgbench_history VALUES (10, 1, 22000, 5000, CURRENT_TIMESTAMP); -- Time: 3.132 ms










Bulk Copy (250K - 2M/s)

Distributed tables support COPY [http://www.postgresql.org/docs/current/static/sql-copy.html] from the Citus coordinator for bulk ingestion, which can achieve much higher ingestion rates than INSERT statements.

COPY can be used to load data directly from an application using COPY .. FROM STDIN, from a file on the server, or program executed on the server.

COPY pgbench_history FROM STDIN WITH (FORMAT CSV);





In psql, the \COPY command can be used to load data from the local machine. The \COPY command actually sends a COPY .. FROM STDIN command to the server before sending the local data, as would an application that loads data directly.

psql -c "\COPY pgbench_history FROM 'pgbench_history-2016-03-04.csv' (FORMAT CSV)"





A powerful feature of COPY for distributed tables is that it asynchronously copies data to the workers over many parallel connections, one for each shard placement. This means that data can be ingested using multiple workers and multiple cores in parallel. Especially when there are expensive indexes such as a GIN, this can lead to major performance boosts over ingesting into a regular PostgreSQL table.

From a throughput standpoint, you can expect data ingest ratios of 250K - 2M rows per second when using COPY. To learn more about COPY performance across different scenarios, please refer to the following blog post [https://www.citusdata.com/blog/2016/06/15/copy-postgresql-distributed-tables].


Note

To avoid opening too many connections to worker nodes, we recommend running only two COPY commands on a distributed table at a time. In practice, running more than four at a time rarely results in performance benefits. An exception is when all the data in the ingested file has a specific partition key value, which goes into a single shard. COPY will only open connections to shards when necessary.






Masterless Citus (50k/s-500k/s)

Masterless Citus (Citus MX) builds on the Citus extension. It gives you the ability to query and write to distributed tables from any node, which allows you to horizontally scale out your write-throughput using PostgreSQL. It also removes the need to interact with a primary node in a Citus cluster for data ingest or queries.

Citus MX is currently available in private beta on Citus Cloud. For more information see Masterless Mode (beta).
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Query Performance Tuning

In this section, we describe how you can tune your Citus cluster to get maximum performance. We begin by explaining how choosing the right distribution column affects performance. We then describe how you can first tune your database for high performance on one PostgreSQL server and then scale it out across all the CPUs in the cluster. In this section, we also discuss several performance related configuration parameters wherever relevant.


Table Distribution and Shards

The first step while creating a distributed table is choosing the right distribution column. This helps Citus push down several operations directly to the worker shards and prune away unrelated shards which lead to significant query speedups.

Typically, you should pick that column as the distribution column which is the most commonly used join key or on which most queries have filters. For filters, Citus uses the distribution column ranges to prune away unrelated shards, ensuring that the query hits only those shards which overlap with the WHERE clause ranges. For joins, if the join key is the same as the distribution column, then Citus executes the join only between those shards which have matching / overlapping distribution column ranges. All these shard joins can be executed in parallel on the workers and hence are more efficient.

In addition, Citus can push down several operations directly to the worker shards if they are based on the distribution column. This greatly reduces both the amount of computation on each node and the network bandwidth involved in transferring data across nodes.

Once you choose the right distribution column, you can then proceed to the next step, which is tuning worker node performance.




PostgreSQL tuning

The Citus coordinator partitions an incoming query into fragment queries, and sends them to the workers for parallel processing. The workers are just extended PostgreSQL servers and they apply PostgreSQL’s standard planning and execution logic for these queries. So, the first step in tuning Citus is tuning the PostgreSQL configuration parameters on the workers for high performance.

Tuning the parameters is a matter of experimentation and often takes several attempts to achieve acceptable performance. Thus it’s best to load only a small portion of your data when tuning to make each iteration go faster.

To begin the tuning process create a Citus cluster and load data in it. From the coordinator node, run the EXPLAIN command on representative queries to inspect performance. Citus extends the EXPLAIN command to provide information about distributed query execution. The EXPLAIN output shows how each worker processes the query and also a little about how the coordinator node combines their results.

Here is an example of explaining the plan for a particular example query.

EXPLAIN
 SELECT date_trunc('minute', created_at) AS minute,
        sum((payload->>'distinct_size')::int) AS num_commits
   FROM github_events
  WHERE event_type = 'PushEvent'
  GROUP BY minute
  ORDER BY minute;





Sort  (cost=0.00..0.00 rows=0 width=0)
  Sort Key: minute
  ->  HashAggregate  (cost=0.00..0.00 rows=0 width=0)
    Group Key: minute
    ->  Custom Scan (Citus Real-Time)  (cost=0.00..0.00 rows=0 width=0)
      Task Count: 32
      Tasks Shown: One of 32
      ->  Task
        Node: host=localhost port=5433 dbname=postgres
        ->  HashAggregate  (cost=93.42..98.36 rows=395 width=16)
          Group Key: date_trunc('minute'::text, created_at)
          ->  Seq Scan on github_events_102042 github_events  (cost=0.00..88.20 rows=418 width=503)
            Filter: (event_type = 'PushEvent'::text)
(13 rows)





This tells you several things. To begin with there are thirty-two shards, and the planner chose the Citus real-time executor to execute this query:

->  Custom Scan (Citus Real-Time)  (cost=0.00..0.00 rows=0 width=0)
  Task Count: 32





Next it picks one of the workers and shows you more about how the query behaves there. It indicates the host, port, and database so you can connect to the worker directly if desired:

Tasks Shown: One of 32
->  Task
  Node: host=localhost port=5433 dbname=postgres





Distributed EXPLAIN next shows the results of running a normal PostgreSQL EXPLAIN on that worker for the fragment query:

->  HashAggregate  (cost=93.42..98.36 rows=395 width=16)
  Group Key: date_trunc('minute'::text, created_at)
  ->  Seq Scan on github_events_102042 github_events  (cost=0.00..88.20 rows=418 width=503)
    Filter: (event_type = 'PushEvent'::text)





You can now connect to the worker at ‘localhost’, port ‘5433’ and tune query performance for the shard github_events_102042 using standard PostgreSQL techniques. As you make changes run EXPLAIN again from the coordinator or right on the worker.

The first set of such optimizations relates to configuration settings. PostgreSQL by default comes with conservative resource settings; and among these settings, shared_buffers and work_mem are probably the most important ones in optimizing read performance. We discuss these parameters in brief below. Apart from them, several other configuration settings impact query performance. These settings are covered in more detail in the PostgreSQL manual [http://www.postgresql.org/docs/current/static/runtime-config.html] and are also discussed in the PostgreSQL 9.0 High Performance book [http://www.amazon.com/PostgreSQL-High-Performance-Gregory-Smith/dp/184951030X].

shared_buffers defines the amount of memory allocated to the database for caching data, and defaults to 128MB. If you have a worker node with 1GB or more RAM, a reasonable starting value for shared_buffers is 1/4 of the memory in your system. There are some workloads where even larger settings for shared_buffers are effective, but given the way PostgreSQL also relies on the operating system cache, it’s unlikely you’ll find using more than 25% of RAM to work better than a smaller amount.

If you do a lot of complex sorts, then increasing work_mem allows PostgreSQL to do larger in-memory sorts which will be faster than disk-based equivalents. If you see lot of disk activity on your worker node inspite of having a decent amount of memory, then increasing work_mem to a higher value can be useful. This will help PostgreSQL in choosing more efficient query plans and allow for greater amount of operations to occur in memory.

Other than the above configuration settings, the PostgreSQL query planner relies on statistical information about the contents of tables to generate good plans. These statistics are gathered when ANALYZE is run, which is enabled by default. You can learn more about the PostgreSQL planner and the ANALYZE command in greater detail in the PostgreSQL documentation [http://www.postgresql.org/docs/current/static/sql-analyze.html].

Lastly, you can create indexes on your tables to enhance database performance. Indexes allow the database to find and retrieve specific rows much faster than it could do without an index. To choose which indexes give the best performance, you can run the query with EXPLAIN [http://www.postgresql.org/docs/current/static/sql-explain.html] to view query plans and optimize the slower parts of the query. After an index is created, the system has to keep it synchronized with the table which adds overhead to data manipulation operations. Therefore, indexes that are seldom or never used in queries should be removed.

For write performance, you can use general PostgreSQL configuration tuning to increase INSERT rates. We commonly recommend increasing checkpoint_timeout and max_wal_size settings. Also, depending on the reliability requirements of your application, you can choose to change fsync or synchronous_commit values.

Once you have tuned a worker to your satisfaction you will have to manually apply those changes to the other workers as well. To verify that they are all behaving properly, set this configuration variable on the coordinator:

SET citus.explain_all_tasks = 1;





This will cause EXPLAIN to show the query plan for all tasks, not just one.

EXPLAIN
 SELECT date_trunc('minute', created_at) AS minute,
        sum((payload->>'distinct_size')::int) AS num_commits
   FROM github_events
  WHERE event_type = 'PushEvent'
  GROUP BY minute
  ORDER BY minute;





 Sort  (cost=0.00..0.00 rows=0 width=0)
   Sort Key: minute
   ->  HashAggregate  (cost=0.00..0.00 rows=0 width=0)
     Group Key: minute
     ->  Custom Scan (Citus Real-Time)  (cost=0.00..0.00 rows=0 width=0)
       Task Count: 32
       Tasks Shown: All
       ->  Task
         Node: host=localhost port=5433 dbname=postgres
         ->  HashAggregate  (cost=93.42..98.36 rows=395 width=16)
           Group Key: date_trunc('minute'::text, created_at)
           ->  Seq Scan on github_events_102042 github_events  (cost=0.00..88.20 rows=418 width=503)
             Filter: (event_type = 'PushEvent'::text)
       ->  Task
         Node: host=localhost port=5434 dbname=postgres
         ->  HashAggregate  (cost=103.21..108.57 rows=429 width=16)
           Group Key: date_trunc('minute'::text, created_at)
           ->  Seq Scan on github_events_102043 github_events  (cost=0.00..97.47 rows=459 width=492)
             Filter: (event_type = 'PushEvent'::text)
       --
       -- ... repeats for all 32 tasks
       --     alternating between workers one and two
       --     (running in this case locally on ports 5433, 5434)
       --

(199 rows)





Differences in worker execution can be caused by tuning configuration differences, uneven data distribution across shards, or hardware differences between the machines. To get more information about the time it takes the query to run on each shard you can use EXPLAIN ANALYZE.


Note

Note that when citus.explain_all_tasks is enabled, EXPLAIN plans are retrieved sequentially, which may take a long time for EXPLAIN ANALYZE. Also a remote EXPLAIN may error out when explaining a broadcast join while the shards for the small table have not yet been fetched. An error message is displayed advising to run the query first.






Scaling Out Performance

As mentioned, once you have achieved the desired performance for a single shard you can set similar configuration parameters on all your workers. As Citus runs all the fragment queries in parallel across the worker nodes, users can scale out the performance of their queries to be the cumulative of the computing power of all of the CPU cores in the cluster assuming that the data fits in memory.

Users should try to fit as much of their working set in memory as possible to get best performance with Citus. If fitting the entire working set in memory is not feasible, we recommend using SSDs over HDDs as a best practice. This is because HDDs are able to show decent performance when you have sequential reads over contiguous blocks of data, but have significantly lower random read / write performance. In cases where you have a high number of concurrent queries doing random reads and writes, using SSDs can improve query performance by several times as compared to HDDs. Also, if your queries are highly compute intensive, it might be beneficial to choose machines with more powerful CPUs.

To measure the disk space usage of your database objects, you can log into the worker nodes and use PostgreSQL administration functions [http://www.postgresql.org/docs/current/static/functions-admin.html#FUNCTIONS-ADMIN-DBSIZE] for individual shards. The pg_total_relation_size() function can be used to get the total disk space used by a table. You can also use other functions mentioned in the PostgreSQL docs to get more specific size information. On the basis of these statistics for a shard and the shard count, users can compute the hardware requirements for their cluster.

Another factor which affects performance is the number of shards per worker node. Citus partitions an incoming query into its fragment queries which run on individual worker shards. Hence, the degree of parallelism for each query is governed by the number of shards the query hits. To ensure maximum parallelism, you should create enough shards on each node such that there is at least one shard per CPU core. Another consideration to keep in mind is that Citus will prune away unrelated shards if the query has filters on the distribution column. So, creating more shards than the number of cores might also be beneficial so that you can achieve greater parallelism even after shard pruning.




Distributed Query Performance Tuning

Once you have distributed your data across the cluster, with each worker optimized for best performance, you should be able to see high performance gains on your queries. After this, the final step is to tune a few distributed performance tuning parameters.

Before we discuss the specific configuration parameters, we recommend that you measure query times on your distributed cluster and compare them with the single shard performance. This can be done by enabling \timing and running the query on the coordinator node and running one of the fragment queries on the worker nodes. This helps in determining the amount of time spent on the worker nodes and the amount of time spent in fetching the data to the coordinator node. Then, you can figure out what the bottleneck is and optimize the database accordingly.

In this section, we discuss the parameters which help optimize the distributed query planner and executors. There are several relevant parameters and we discuss them in two sections:- general and advanced. The general performance tuning section is sufficient for most use-cases and covers all the common configs. The advanced performance tuning section covers parameters which may provide performance gains in specific use cases.


General

For higher INSERT performance, the factor which impacts insert rates the most is the level of concurrency. You should try to run several concurrent INSERT statements in parallel. This way you can achieve very high insert rates if you have a powerful coordinator node and are able to use all the CPU cores on that node together.

Citus has two executor types for running SELECT queries. The desired executor can be selected by setting the citus.task_executor_type configuration parameter. If your use case mainly requires simple key-value lookups or requires sub-second responses to aggregations and joins, you can choose the real-time executor. On the other hand if there are long running queries which require repartitioning and shuffling of data across the workers, then you can switch to the the task tracker executor.

Other than the above, there are two configuration parameters which can be useful in cases where approximations produce meaningful results. These two parameters are citus.limit_clause_row_fetch_count and citus.count_distinct_error_rate. The former sets the number of rows to fetch from each task while calculating limits while the latter sets the desired error rate when calculating approximate distinct counts. You can learn more about the applicability and usage of these parameters in the user guide sections: Count (Distinct) Aggregates and Limit Pushdown.




Advanced

In this section, we discuss advanced performance tuning parameters. These parameters are applicable to specific use cases and may not be required for all deployments.


Task Assignment Policy

The Citus query planner assigns tasks to the worker nodes based on shard locations. The algorithm used while making these assignments can be chosen by setting the citus.task_assignment_policy configuration parameter. Users can alter this configuration parameter to choose the policy which works best for their use case.

The greedy policy aims to distribute tasks evenly across the workers. This policy is the default and works well in most of the cases. The round-robin policy assigns tasks to workers in a round-robin fashion alternating between different replicas. This enables much better cluster utilization when the shard count for a table is low compared to the number of workers. The third policy is the first-replica policy which assigns tasks on the basis of the insertion order of placements (replicas) for the shards. With this policy, users can be sure of which shards will be accessed on each machine. This helps in providing stronger memory residency guarantees by allowing you to keep your working set in memory and use it for querying.




Intermediate Data Transfer Format

There are two configuration parameters which relate to the format in which intermediate data will be transferred across workers or between workers and the coordinator. Citus by default transfers intermediate query data in the text format. This is generally better as text files typically have smaller sizes than the binary representation. Hence, this leads to lower network and disk I/O while writing and transferring intermediate data.

However, for certain data types like hll or hstore arrays, the cost of serializing and deserializing data is pretty high. In such cases, using binary format for transferring intermediate data can improve query performance due to reduced CPU usage. There are two configuration parameters which can be used to tune this behaviour, citus.binary_master_copy_format and citus.binary_worker_copy_format. Enabling the former uses binary format to transfer intermediate query results from the workers to the coordinator while the latter is useful in queries which require dynamic shuffling of intermediate data between workers.




Real Time Executor

If you have SELECT queries which require sub-second response times, you should try to use the real-time executor.

The real-time executor opens one connection and uses two file descriptors per unpruned shard (Unrelated shards are pruned away during planning). Due to this, the executor may need to open more connections than max_connections or use more file descriptors than max_files_per_process if the query hits a high number of shards.

In such cases, the real-time executor will begin throttling tasks to prevent overwhelming resources on the workers. Since this throttling can reduce query performance, the real-time executor will issue a warning suggesting that max_connections or max_files_per_process should be increased. On seeing these warnings, you should increase the suggested parameters to maintain the desired query performance.




Task Tracker Executor

If your queries require repartitioning of data or more efficient resource management, you should use the task tracker executor. There are two configuration parameters which can be used to tune the task tracker executor’s performance.

The first one is the citus.task_tracker_delay. The task tracker process wakes up regularly, walks over all tasks assigned to it, and schedules and executes these tasks. This parameter sets the task tracker sleep time between these task management rounds. Reducing this parameter can be useful in cases when the shard queries are short and hence update their status very regularly.

The second parameter is citus.max_running_tasks_per_node. This configuration value sets the maximum number of tasks to execute concurrently on one worker node node at any given time. This configuration entry ensures that you don’t have many tasks hitting disk at the same time and helps in avoiding disk I/O contention. If your queries are served from memory or SSDs, you can increase citus.max_running_tasks_per_node without much concern.

With this, we conclude our discussion about performance tuning in Citus. To learn more about the specific configuration parameters discussed in this section, please visit the Configuration Reference section of our documentation.
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