Useful Diagnostic Queries

Finding which shard contains data for a specific tenant

The rows of a distributed table are grouped into shards, and each shard is placed on a worker node in the Citus cluster. In the multi-tenant Citus use case we can determine which worker node contains the rows for a specific tenant by putting together two pieces of information: the shard id associated with the tenant id, and the shard placements on workers. The two can be retrieved together in a single query. Suppose our multi-tenant application’s tenants and are stores, and we want to find which worker node holds the data for Gap.com (id=4, suppose).

To find the worker node holding the data for store id=4, ask for the placement of rows whose distribution column has value 4:

SELECT shardid, shardstate, shardlength, nodename, nodeport, placementid
  FROM pg_dist_placement AS placement,
       pg_dist_node AS node
 WHERE placement.groupid = node.groupid
   AND node.noderole = 'primary'
   AND shardid = (
     SELECT get_shard_id_for_distribution_column('stores', 4)
   );

The output contains the host and port of the worker database.

┌─────────┬────────────┬─────────────┬───────────┬──────────┬─────────────┐
│ shardid │ shardstate │ shardlength │ nodename  │ nodeport │ placementid │
├─────────┼────────────┼─────────────┼───────────┼──────────┼─────────────┤
│  102009 │          1 │           0 │ localhost │     5433 │           2 │
└─────────┴────────────┴─────────────┴───────────┴──────────┴─────────────┘

Finding the distribution column for a table

Each distributed table in Citus has a “distribution column.” For more information about what this is and how it works, see Distributed Data Modeling. There are many situations where it is important to know which column it is. Some operations require joining or filtering on the distribution column, and you may encounter error messages with hints like, “add a filter to the distribution column.”

The pg_dist_* tables on the coordinator node contain diverse metadata about the distributed database. In particular pg_dist_partition holds information about the distribution column (formerly called partition column) for each table. You can use a convenient utility function to look up the distribution column name from the low-level details in the metadata. Here’s an example and its output:

-- create example table

CREATE TABLE products (
  store_id bigint,
  product_id bigint,
  name text,
  price money,

  CONSTRAINT products_pkey PRIMARY KEY (store_id, product_id)
);

-- pick store_id as distribution column

SELECT create_distributed_table('products', 'store_id');

-- get distribution column name for products table

SELECT column_to_column_name(logicalrelid, partkey) AS dist_col_name
  FROM pg_dist_partition
 WHERE logicalrelid='products'::regclass;

Example output:

┌───────────────┐
│ dist_col_name │
├───────────────┤
│ store_id      │
└───────────────┘

Detecting locks

This query will run across all worker nodes and identify locks, how long they’ve been open, and the offending queries:

SELECT * FROM citus_lock_waits;

For more information, see Distributed Query Activity.

Querying the size of your shards

This query will provide you with the size of every shard of a given distributed table, designated here with the placeholder my_table:

SELECT shardid, table_name, shard_size
FROM citus_shards
WHERE table_name = 'my_table';

Example output:

.
 shardid | table_name | shard_size
---------+------------+------------
  102170 | my_table   |   90177536
  102171 | my_table   |   90177536
  102172 | my_table   |   91226112
  102173 | my_table   |   90177536

This query uses the Shard information view.

Querying the size of all distributed tables

This query gets a list of the sizes for each distributed table plus the size of their indices.

SELECT table_name, table_size
  FROM citus_tables;

Example output:

┌───────────────┬────────────┐
│  table_name   │ table_size │
├───────────────┼────────────┤
│ github_users  │ 39 MB      │
│ github_events │ 98 MB      │
└───────────────┴────────────┘

There are other ways to measure distributed table size, as well. See Determining Table and Relation Size.

Identifying unused indices

This query will run across all worker nodes and identify any unused indexes for a given distributed table, designated here with the placeholder my_distributed_table:

SELECT *
FROM run_command_on_shards('my_distributed_table', $cmd$
  SELECT array_agg(a) as infos
  FROM (
    SELECT (
      schemaname || '.' || relname || '##' || indexrelname || '##'
                 || pg_size_pretty(pg_relation_size(i.indexrelid))::text
                 || '##' || idx_scan::text
    ) AS a
    FROM  pg_stat_user_indexes ui
    JOIN  pg_index i
    ON    ui.indexrelid = i.indexrelid
    WHERE NOT indisunique
    AND   idx_scan < 50
    AND   pg_relation_size(relid) > 5 * 8192
    AND   (schemaname || '.' || relname)::regclass = '%s'::regclass
    ORDER BY
      pg_relation_size(i.indexrelid) / NULLIF(idx_scan, 0) DESC nulls first,
      pg_relation_size(i.indexrelid) DESC
  ) sub
$cmd$);

Example output:

┌─────────┬─────────┬───────────────────────────────────────────────────────────────────────┐
│ shardid │ success │                            result                                     │
├─────────┼─────────┼───────────────────────────────────────────────────────────────────────┤
│  102008 │ t       │                                                                       │
│  102009 │ t       │ {"public.my_distributed_table_102009##stupid_index_102009##28 MB##0"} │
│  102010 │ t       │                                                                       │
│  102011 │ t       │                                                                       │
└─────────┴─────────┴───────────────────────────────────────────────────────────────────────┘

Monitoring client connection count

This query will give you the connection count by each type that are open on the coordinator:

SELECT state, count(*)
FROM pg_stat_activity
GROUP BY state;

Exxample output:

┌────────┬───────┐
│ state  │ count │
├────────┼───────┤
│ active │     3 │
│ ∅      │     1 │
└────────┴───────┘

Viewing system queries

Active queries

The citus_stat_activity view shows which queries are currently executing. You can filter to find the actively executing ones, along with the process ID of their backend:

SELECT global_pid, query, state
  FROM citus_stat_activity
 WHERE state != 'idle';

Why are queries waiting

We can also query to see the most common reasons that non-idle queries that are waiting. For an explanation of the reasons, check the PostgreSQL documentation.

SELECT wait_event || ':' || wait_event_type AS type, count(*) AS number_of_occurences
  FROM pg_stat_activity
 WHERE state != 'idle'
GROUP BY wait_event, wait_event_type
ORDER BY number_of_occurences DESC;

Example output when running pg_sleep in a separate query concurrently:

┌─────────────────┬──────────────────────┐
│      type       │ number_of_occurences │
├─────────────────┼──────────────────────┤
│ ∅               │                    1 │
│ PgSleep:Timeout │                    1 │
└─────────────────┴──────────────────────┘

Index hit rate

This query will provide you with your index hit rate across all nodes. Index hit rate is useful in determining how often indices are used when querying:

-- on coordinator
SELECT 100 * (sum(idx_blks_hit) - sum(idx_blks_read)) / sum(idx_blks_hit) AS index_hit_rate
  FROM pg_statio_user_indexes;

-- on workers
SELECT nodename, result as index_hit_rate
FROM run_command_on_workers($cmd$
  SELECT 100 * (sum(idx_blks_hit) - sum(idx_blks_read)) / sum(idx_blks_hit) AS index_hit_rate
    FROM pg_statio_user_indexes;
$cmd$);

Example output:

┌───────────┬────────────────┐
│ nodename  │ index_hit_rate │
├───────────┼────────────────┤
│ 10.0.0.16 │ 96.0           │
│ 10.0.0.20 │ 98.0           │
└───────────┴────────────────┘

Cache hit rate

Most applications typically access a small fraction of their total data at once. Postgres keeps frequently accessed data in memory to avoid slow reads from disk. You can see statistics about it in the pg_statio_user_tables view.

An important measurement is what percentage of data comes from the memory cache vs the disk in your workload:

-- on coordinator
SELECT
  sum(heap_blks_read) AS heap_read,
  sum(heap_blks_hit)  AS heap_hit,
  100 * sum(heap_blks_hit) / (sum(heap_blks_hit) + sum(heap_blks_read)) AS cache_hit_rate
FROM
  pg_statio_user_tables;

-- on workers
SELECT nodename, result as cache_hit_rate
FROM run_command_on_workers($cmd$
  SELECT
    100 * sum(heap_blks_hit) / (sum(heap_blks_hit) + sum(heap_blks_read)) AS cache_hit_rate
  FROM
    pg_statio_user_tables;
$cmd$);

Example output:

┌───────────┬──────────┬─────────────────────┐
│ heap_read │ heap_hit │   cache_hit_rate    │
├───────────┼──────────┼─────────────────────┤
│         1 │      132 │ 99.2481203007518796 │
└───────────┴──────────┴─────────────────────┘

If you find yourself with a ratio significantly lower than 99%, then you likely want to consider increasing the cache available to your database